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A method for the Monte Carlo simulation, by digital computer, of the evolution of 
a colliding and coagulating population of suspended particles is described. Collision 
mechanisms studied both separately and in combination are : Brownian motion of 
the particles, and laminar and isotropic turbulent shearing motions of the suspending 
fluid. Steady-state distributions are obtained by adding unit-size particles at a 
constant rate and removing all particles once they reach a preset maximum volume. 
The resulting size distributions are found to agree with those obtained by dimensional 
analysis (Hunt 1982). 

1. Introduction 
In  many fluid systems with a continuous size distribution of suspended particles 

the primary mechanism for the production of larger particles from smaller particles, 
over much of the size range, is coagulation, the process of collision and coalescence 
of particles. These coagulating particles can be solid or liquid, with the suspending 
medium gaseous or liquid, for example : atmospheric aerosols, cloud water droplets, 
colloidal suspensions in water or emulsions of one liquid or another. The computations 
described in this paper are primarily concerned with suspensions of solid particles in 
water, but the techniques used have general applications. 

In  describing the dynamics of continuous size distributions it is convenient to 
introduce the particle-size distribution n(w), defined by 

dN = n(w) dw, 

so that dN is the number of particles per fluid volume whose sizes (volumes) lie in 
the range w to  w + dw. The collision rate, per unit volume of fluid, of particles of volumes 
w* and wi is given by the product of their respective concentrations and a collision 
function /3(wi, wi) representing the geometry and dynamics of the collision mechanism, 
so that 

collision rate = p(vi,  vi) n(wJ n(wi) dwt dwi. 

Then the change with time of the particle-size distribution is given by the general 
dynamic equation 
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Here I(v) is a source of particles (through condensation, for example) and S(v)  an/& 
is a particle sink resulting from particles sedimenting in the z-direction at  their Stokes 
settling velocity S(v) .  If we restrict attention to size ranges where the source term 
is negligible, and to homogeneous situations (so that spatial derivatives may be 
neglected), then ( 1 )  reduces to the coagulation equation 

an(v) 1 
P ( d ,  v-v’) n(v’)n(v-v’) dv‘ at = ?I, 

-JowP(v, v’) n(v )  n (d)  dv‘ 

The two terms on the right-hand side of (2) represent respectively t,,e rate of gain 
of particles of volume v by coagulation of pairs of smaller particles, conserving 
volume, and the loss of particles, w, due to their coagulation with particles of all sizes. 

In writing (2) it is assumed that the suspension is completely mixed and that 
correlations between particles induced by the coagulation process can be ignored. For 
example, as particles of a given size coalesce, a local reduction in their number occurs, 
so fewer particles of this size remain for further coalescence. Such spatial 
inhomogeneities, which can be expressed as conditional probabilities for the collision 
of two particles (Gillespie 1972) are ignored in (2), whose solution thus may not 
include all possible histories of particle growth. 

A variety of techniques have been used to investigate ( 1 )  and (2), and an extensive 
literature has resulted (for a recent account see Pruppacher & Klett 1978). In  this 
study we present a Monte Carlo method for the direct simulation of the processes of 
collision and coalescence of particles. Unlike the direct numerical solutions of (2), such 
as developed by Gelbard, Tambour & Seinfeld (1980), the technique avoids 
approximations involved in writing (2). It also does not require analytic forms of the 
collision functions p (except for when Brownian motion is the collision mechanism; 
see Appendix A). Direct comparison of the results of the Monte Carlo simulation 
method and numerical integrations of (2) should therefore prove useful. Furthermore, 
in addition to predicting the average particle-size spectrum the simulation method 
provides information on higher moments of properties of the suspension, thereby 
enabling estimates of the uncertainty of the size spectrum. 

In order to confirm the appropriateness of the method and verify the techniques 
used, it was considered sensible first to ignore particle interactions such as those due 
to hydrodynamic and interfacial forces. Clearly, this is unrealistic and only defensible 
as a first step toward a more sophisticated model. However, there seemed little point 
in proceeding to this enhanced model if the simulation method would not reproduce 
the results of Hunt and Friedlander which were derived in the absence of interparticle 
forces. A more complex model including also the simulation of differential settling 
induced collisions is the subject of a subsequent paper. 

For particles to coagulate two processes are required : ( a )  a mechanism to develop 
relative motion of the particles through the fluid which will bring them into close 
proximity; and ( b )  short-range interfacial forces acting between the particles to bring 
about their coalescence. Relative motion of particles in a fluid can be due to one or 
a combination of the following: 

1 .  Brownian or thermal motion ; 
2. laminar or turbulent fluid shear or straining; 
3. particle inertia in turbulent flows; 
4. differential sedimentation of different-sized particles. 
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Dimensional 
Mechanism Collision function /3 Source parameter 

Smoluchowski K , = -  kT 
Y 

Brownian motion 
3P TI9.l 

Laminar shear 1.33G(ri + T , ) ~  

Pure strain 4 . 8 9 j ( r , + ~ ~ ) ~  
(extension) 

Isotropic turbulent 2.3f(r, + T , ) ~  (e/v)* 
shear 

Smoluchowski G 
(1917) 

Schowalter 
(1977) 

Turner (1956) 

Zeichner and li 

Saffman and ( e / d  

Differential 
sedimentation 

Findheisen - d P  -Pc) 
(1939) Y 

f Corrected from original - see text 

TABLE 1. Collision functions and characteristic dimensional parameters for various particle collision 
mechanisms. Values of are for collision mechanisms acting individually with no hydrodynamic 

or other interparticle forces. 

If hydrodynamic and interfacial forces between particles are ignored, relatively 
simple analytic estimates for p are available for each of these collision mechanisms 
acting independently, and these are summarized in table 1. The table also includes 
the dimensional parameters that  characterize the mechanisms and determine, in any 
given situation, the characteristic size of particles that they affect. 

Note that  all the collision functions depend on properties of the suspending fluid, 
the structure of its velocity field, and the size of the particles. However, only the 
functions for the final two collision mechanisms depend on a physical property of the 
particles: the difference between their density and that of the fluid. If the particle 
density excess ratio (p, -p , ) /p ,  is small then sedimentation and inertia will only be 
important for larger particles. I n  a turbulent flow sedimentation will dominate 
inertial effects unless the characteristic acceleration (e3/v)a is comparable to 9, the 
gravitational acceleration. I n  this paper we will be concerned only with the first two 
collision mechanisms. 

For a coagulating system more than one collision mechanism can be important for 
a given size range of particles. However, if there is a particle size subrange in which 
the coagulation is dominated by only one collision mechanism, and this subrange is 
in a state of dynamic equilibrium, then the theory of Friedlander (1960a, b)  and Hunt 
(1982) predicts the local size distribution given a constant flux of mass through the 
particle-size distribution. Aside from ignoring interparticle forces, the theory depends 
on two basic hypotheses : an equilibrium size distribution being established and 
non-interference of particles of a size characteristic of one collision mechanism with 
those of another collision mechanism. 

Hunt's (1982) experimental results generally support the predictions of the theory 
for Brownian motion and laminar shear but are limited by uncertainty over the 
effects of the unsteadiness in the experiments due to particle sedimentation and loss 
from the system. In the present work these limitations are overcome by performing a 
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computer ‘experiment ’ in which particle collisions are directly simulated by Monte 
Carlo techniques. The size evolution of a population of particles is followed. This 
allows the effects of each collision mechanism to be evaluated independently, and, 
by combining mechanisms, the hypothesis of non-interference of characteristic 
particle sizes to  be tested. Collision rates as well as the approach to and the final form 
of an equilibrium size distribution are studied. The method could also be used to study 
the ‘ageing ’ of an initially fixed number of particles as they collide and grow. 

Monte Carlo simulations have been used by Nowakowski & Sitarski (1981) to model 
the collision function for Brownian coagulation of aerosol particles and by Husar 
(1971) and Gartrell & Friedlander (1975) to find solutions to the coagulation equation 
(2). In  this paper we first briefly describe Hunt’s theory and experimental results. 
Subsequent sections describe in detail the simulation techniques used to  model 
Brownian, laminar-shear- and turbulent-shear-induced coagulation and the results 
obtained. The results are then compared with previous experiments and theory, and 
the success of the method evaluated. 

2. Hunt’s work 
Friedlander (1960a, b )  explained observed regularities in the size distributions of 

atmospheric aerosols by assuming that a state of dynamic equilibrium existed 
between production, coagulation and loss through sedimentation of particles. He then 
employed methods analogous to those developed by Kolomogorov for the analysis 
of turbulence spectra. If i t  is assumed that the size distribution in some subrange 
depends only on the particle volume v, the constant flux E of particle volume through 
the size distribution, and a dimensional parameter C characterizing the sole dominant 
coagulation mechanism (see table 1) so that 

n(v )  = n(v ,  E ,  G) ; 

then the form of n(v )  can be determined by dimensional analysis alone. This is 
analogous to postulating an inertial subrange of scales in which the turbulent-energy 
spectrum is determined solely by the wavenumber and the flux of energy through 
the subrange (equal to  the rate of energy dissipation by viscous stresses at the smallest 
scales) (see e.g. Monin & Yaglom 1975, chap. 21). 

Hunt (1982) extended these ideas to  hydrosols and compared the predictions of 
his theory with both laboratory and field measurements. I n  particular, he performed 
experiments on Brownian and laminar shear-induced coagulation. His theory predicts 
the following size distributions for regions dominated by Brownian, shear and 
differential-sedimentation coagulation : 

Brownian 

shear 

differential sedimentation 
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He shows (Hunt 1982, figure 1 )  that it  is plausible, for a typical coagulating hydrosol, 
that these three mechanisms could dominate in regions of successively increasing 
particle size. 

Hunt’s measurements indicated that this system was in a quasi-dynamic equilibrium 
where size distributions taken at progressively later times were similar in shape but 
decreasing in magnitude. This unsteadiness was due to the overall particle 
concentration decreasing as a result of the larger aggregates settling to the bottom. 
Hunt measured the varying total suspended volume by light absorbance and used 
the computed rate of volume loss as an estimate for E. He explains why this will be 
an overestimate for the quantity (for details see Hunt 1982), but it is still a useful 
approximation. The measured value of ,?$ can then be used to normalize size 
distributions (cf. (3)-(5)) partially correcting for the effects of unsteadiness. 

Hunt successfully collapsed much of his data a t  various times and for different 
experiments a t  different shear rates by normalizing the size distributions not just with 
I$ but with the ratio (E/G)i ,  and non-dimensionalizing the particle volume with the 
characteristic volume a t  which particles have both Brownian collisions and shear- 
induced collisions at the same rate. This characteristic volume, found by putting 
ri = r, in the expressions for the relevant collision rates in table 1, is seen to be 
v = xKB/3G, proportional to the ratio of the Brownian and shear parameters. 

For some of the particle types tested the normalized volume distributions 
expressed as functions of non-dimensional size provide support for the relations (3) 
and (4) (see in particular Hunt 1982, figure 5). However, as we have already noted, 
there are some reservations about the experiments, complicated as they are by 
instrumental difficulties and uncertainties about the effects of unsteadiness. Also, no 
one single experiment exhibits a size distribution having regions with the equilibrium 
power laws corresponding to both Brownian and shear-dominated mechanisms. One 
of the main aims of the present study, then, is to provide support or otherwise for 
Hunt’s results by means of a computer ‘experiment’. This allows a genuine steady 
state to be set up and detailed probing of the interaction between Brownian and shear 
collision mechanisms. 

3. Computer simulation 
3.1. General technique 

The simulation proceeds by tracking the positions and sizes of a variable number N 
of spherical particles (typically 50 < N < 600). Whenever two particles collide they 
are coagulated to form a larger (still spherical) particle, conserving particle volume, 
thereby reducing N by one. The population of particles studied therefore consists of 
particles of unit volume v, and integral multiples vi = iv, of the unit volume. In  this 
paper the suffix i is used to denote properties of i-fold particles made up from i 
elemental particles. All lengths and times in the computer model are non- 
dimensionalized with the radius of the unit particle and the time step At. The collision 
simulation algorithm is programmed for a digital computer. 

The program can also function in a different mode in which collisions are counted 
but particles are not coagulated. On collision, one of the particles is randomly 
repositioned so as to avoid repeated collisions of the same pair of particles. This allows 
direct measurement of the collision function p for any given mechanism. 

Particle motions take place in a cubical box or ‘control volume’ of side L and 
volume V .  (Figure 1 gives a schematic representation of this box and a definition of 
the rectangular coordinate system used.) Particle positions are denoted by 
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FIQURE 1. Schematic diagram of simulation box or ‘control volume’ with Cartesian coordinate 
system and representative particle at position (Pl, P,, G). The displacement of the particle in the 
current time step is (Dl, D,, D3). 

P( i )  = (&(i), P2(i), p3(i)). The simulation employs what are essentially periodic 
boundary conditions, so that particles that  have left the control volume a t  the end 
of a time step are replaced, for the next time step, by image particles that enter from 
the opposite side. This type of boundary condition is commonly employed in Monte 
Carlo simulations (see Alder & Wainwright 1969) and allows an infinite homogeneous 
system to be modelled approximately by a finite volume. Edge effects are reduced 
by allowing particles to interact with image particles just outside the control volume. 
The slight modifications to these boundary conditions required for laminar and 
turbulent shearing motions are described in 333.4 and 3.5 below. 

In  order to model a system in dynamic equilibrium, a fixed number n, of particles 
of unit volume are added to the population at random each time step and any 
particles that have reached a preset maximum volume vmax = imaxv, are removed 
from the population (typically, Imax = 125). The constant addition of small particles 
is a crude attempt to represent, indirectly, the particle volume flux E into the size 
range from the collision of particles smaller than v,,. In  the simulation 

The removal of large particles is necessary to limit the total volume density of 
particles in the Simulation. It can be physically justified as a crude representation 
of the loss of larger particles from a region by the combined action of sedimentation 
and vertical concentration gradients. The procedure of adding small particles and 
extracting large ones is consistent with the hypothesis that collisions between 
particles of similar size are more important, and is justified a posteriori by the success 
of the simulation in reproducing Hunt’s (1982) dimensional results. 

The simulation starts either by generating a monodisperse population of particles 
randomly distributed over the control volume, or by reading a set of particle positions 
and sizes from a preexisting file. This file is either a set of particles of given size 
distribution generated by an auxiliary program, or the endpoint of a previous 
simulation that is to be continued. Controlling parameters for the simulation run are 
either input manually or read from a file. 
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The particular methods for generating the particle displacements at each time step, 
Y(i )  = (q(i), Y2(i), Y3(i)), and updating their positions between time steps are 
described in detail below in connection with each physical collision mechanism. Each 
particle is assumed to travel on a straight-line path at  constant speed during each 
time step. The algorithm used to detect particle collisions is described in 53.2 below. 

At the end of every time step t,he particle-size distribution is computed. After a 
prescribed number k of time steps, the size distribution, averaged over time t = kAt, 
is placed, along with the positions and sizes of all the particles, in a file in permanent 
computer storage. The particle positions and sizes are written over the previous copy 
to save storage space. The latest version is then always available to restart a run a t  
a later time. The simulation continues until the required number of time steps have 
been completed. 

Time averages are needed to provide reasonable particle size statistics as only a 
small number of particles are followed. Once a simulated system has reached a 
statistical steady state (dynamical equilibrium) then long-time averages can be 
employed to produce well-converged statistics. To follow the evolution of a rapidly 
changing system with any precision, it would be necessary to repeat the simulation 
many times and compute ensemble averages. 

Most simulations were started with a monodisperse population of particles. The 
total volume of particles in the simulation increases continuously until the first 
particle grows by coagulation to om,, and is removed. In  order to have reasonable 
computational times the volume concentration q5 of suspended particles used in the 
simulations is larger than that occurring in many natural systems. (For example, 
typically 4 is about 20 p.p.m. in Hunt’s experiments, but is about lo3 larger in the 
simulation runs.) 

The simulation requires the generation of relatively large numbers of (pseudo-) 
random numbers from both uniform and Gaussian distributions. First, a sequence 
of (pseudo-)random numbers distributed uniformly on the interval ( 0 , l )  are generated 
by the standard congruence method. Random variates are then scaled to any required 
uniform distribution. Variates with Gaussian distribution are generated from this 
sequence by various algebraic manipulations and employing a six-constant rational 
function approximation to the inverse of the Gaussian cumulative distribution 
function (for details see Abramowitz & Stegun 1964, $526.2.23 and 26.8). 

3.2. Collision algorithm 

Detecting which particles have collided a t  each time step is very costly in computer 
time, and so an efficient method is needed. To this end the basic control volume is 
divided into cubic subcells. The cells are chosen to be as small as possible consistent 
with the constraint that any particle can only collide, during the next time step, with 
particles in the same cell or the adjoining 26 cells. Each cell is given three integer 
coordinates that define its position in the control volume. For each particle the 
numbers of the cell it  occupies are stored along with its actual position. 

The first stage in checking for collisions is to determine for each pair of particles 
whether they are in the same or adjoining cells. Only if this is so are they considered 
candidates for a collision and a detailed calculation performed. Checking whether 
particles are in adjoining cells is performed by computationally fast integer arithmetic. 
Given two candidate particles, their relative initial position R P  = P ( l ) - P ( 2 )  and 
displacement R Y = Y(2)  - Y(  1 )  are computed (note the different ordering ofparticles). 
Then the condition for collision is that  the vector R Y  enters the sphere of radius 
u = r t + r j  around the point RP, a simple geometrical test. This corresponds to 



374 H.  J .  Peurson, I. A .  Valioulis and E.  J .  List 

FIQURE 2. (a) Geometry for collision algorithm. (b) Viewed in frame of reference in which 
particle 2 is at rest. 

following the motion of the two particles in a frame of reference moving with the ( 1 )  
particle (see figure 2 for schematic illustration). 

A further advantage of the subcell system is that it allows for easy implementation 
of periodic boundary conditions. Particles in cells along any of the boundaries of the 
control volume are allowed to interact with particles in the requisite cells on the 
opposite side of the volume. 

3.3. Brownian motion 

The thermal impact of molecules cause suspended particles to perform random motion 
relative to the bulk fluid. In  contrast with the recent work of Nowakowski & Sitarski 
(1981), the particles studied here are much larger than the molecular free path in the 
fluid, and so are in the continuum regime of Brownian motion. Also the time step 
At of the simulation is very much larger than the particle viscous relaxation time 
t ,  = 2r2/9v. Therefore the relevant probability distribution function (p.d.f.) for the 
displacement Y of a particle during a time step is (Chandrasekhar 1943) 

Where D is the diffusivity of the particle : 

Each component of Y has an independent Gaussian p.d.f. 

and this is used to replace the Brownian motion of the particles by a finite random 
walk. At each time step three independent random components of displacement are 
generated for each particle from the corresponding Gaussian distribution. The r.m.s. 
displacement Ax in any direction of an i-fold particle is 

Ax, = (2D,At);, 
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where D, = KB/6xr, ,  is the particle diffusivity. D, can be obtained in terms of the 
diffusivity Do of an elemental particle by 

D, = D,i-t. 

Particle collisions are simulated on the basis of straight-line trajectories during each 
time step. The question therefore arises of the validity of this as an approximation 
to Brownian-induced coagulation. The r.m.s. displacement has been chosen correctly, 
but a particle of mass m undergoing Brownian motion actually travels along a 
tortuous path a t  r.m.s. speed (LT/m)k At first sight this suggests that the simulation 
would underpredict the collision rate. However, replacing Brownian motion by a 
finite random walk must change the pair-distribution function, that is to say the 
probability distribution function for the spacing between any given pair of particles. 
So, while modelling Brownian motion by a finite random walk introduces inefficiency 
into the basic collision process, it  can compensate by increasing the probability that 
any pair of particles are found close together a t  the beginning of a time step. Here 
‘close together’ means a separation on the scale of the r.m.s. steplength of the random 
walk. These matters are investigated in detail in the Appendix. Tests with the 
non-coagulating form of the program have shown that satisfactory collision rates for 
monodisperse populations of particles are obtained when the ratio A x / r  is about 0.5. 
It is important to use the maximum possible time step in order to minimize 
computation times. 

3.4. Laminar shear 

The coagulating effects of a velocity gradient are investigated by imposing a uniform 
shearing motion on the control volume : 

u1 = Q X 3 ,  

with G the shear rate. The particles are assumed to move with the fluid so their 
displacement in any time step is just 

Y ( i )  = (q(i), O , O ) ,  &(i) = GP3(i) At. 

As stated in 3 1, in this paper we are ignoring hydrodynamic interactions between 
particles. The large body of work on particle interactions in low-Reynolds-number 
flows (for a review see e.g. Mason 1976) shows that hydrodynamic forces will always 
come into play in a detailed analysis of collision dynamics. This is investigated in 
detail in Part 2 (Valioulis, List & Pearson 1984). 

A uniform shearing motion, on average, moves a fraction of the particles out of 
the control volume at every time step. If they were replaced in the control volume 
according to simple periodic boundary conditions (P ,  = PI - L,  whenever PI > L )  the 
simulation would be completely deterministic once initial positions had been chosen 
for the particles. Each particle would move in a straight line with fixed Pz and P3 
coordinates. After a certain time all collisions between existing particles would cease, 
as each particle would have swept out its own track through the control volume. 
In  a real flow this would not occur, as particles are continually meeting ‘new’ 
particles. Therefore, in the simulation, when a particle leaves the volume it is replaced 
at randomly chosen height P3 on the other side of the control volume. The random 
value of the height P3 must be chosen from a distribution that reflects the increasing 
flux of particles at larger values of P3. This flux is proportional to 5, and a uniformly 
distributed random variate may be converted to this linear p.d.f. by taking its square 
root. This strategy leads to a further complication : particles may be replaced on top 
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of one another, leading to spurious collisions. This is almost totally eliminated by 
checking for such particle overlaps at the end of each time step and randomly moving 
one of each overlapping pair. This may introduce a few further overlaps as no final 
check is made. An estimate of this number is available from the number of initial 
overlaps, which is recorded. This error is acceptable in the light ofother approximations 
in the simulation. Overlaps are also introduced by the process of adding new 
elemental particles at each time step, whatever the collision mechanism. All types 
of overlaps are resolved simultaneously in the same manner. 

3.5. Turbulent shear 

We wish to simulate the coagulation of small particles by turbulent flow. The motion 
of a suspended particle can be identified with the motion of an adjacent fluid particle 
provided that the timescale of the (fluid) particle acceleration is much greater than 
the particle relaxation time t , ;  that is to say, if inertial effects are negligible, as will 
be the case here. Then for particles of radius smaller than the smallest scale of the 
turbulent motion (the Kolmogorov lengthscale (( v3/c);) ,  coagulation rates are 
determined solely by the kinematics of the small scales of the turbulent flow field, 
in particular by the r.m.s. strain rate (e/v)i/l5+. These small scales are very nearly 
isotropic (Batchelor 1953). 

Under these conditions, two particles separated by a distance smaller than the 
Kolmogorov lengthscale are subjected to a motion that can be decomposed into a 
rigid-body rotation representing the local vorticity, and a locally uniform three- 
dimensional straining motion. The rigid-body-rotation component of the motion has 
no effect on the collisions of non-interacting particles, and so only the straining 
motion (with symmetric velocity-gradient tensor) is modelled. The straining motion 
will be uniform over lengthscales smaller than the Kolmogorov microscale, but there 
is no agreement as to the duration of this straining (Monin &, Yaglom 1975). Two 
timescales are important for the small-scale straining: the rate of rotation of the 
principal axes of strain and the rate of change of the magnitude of the principal rates 
of strain. For turbulent flow a t  high Reynolds number the rate of change of the 
deformation fields of the small eddies is related to the Langrangian time microscale 
a (Lumley 1972). The timescale of the deformation field is h/u’, where h is the Taylor 
microscale and u’ the r.m.s. fluctuating velocity. Corrsin (1963) approximates the 
ratio of the two as 

au’/h x (&RA)i, 

and since by definition 

we have 

which implies that the strain and vorticity of the small eddies remain constant for 
a time interval a t  least equal to the Kolmogorov timescale t = (v /e ) i .  This is just the 
inverse of the characteristic strain rate. 

The effect of the rate of rotation of the principal axes of strain on the collision rate 
was investigated using the monodisperse, non-coagulating version of the simulation. 
The velocity gradient was simulated so that both the principal axes and principal 
rates of strain could be changed independently. The magnitude of the strain was kept 
constant for a time interval equal to the Kolmogorov timescale. No statistically 
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significant difference in the collision rate was found, whatever the timescale of 
rotation of the principal axes of strain. Therefore in the coagulation simulation both 
principal axes and rates of strain were varied a t  the same rate. 

Assuming homogeneous, isotropic, unbounded turbulence with a Gaussian 
velocity gradient field, the elements of the rate-of-strain tensor were chosen ran- 
domly to  satisfy (Hinze 1959) 

>--A= au au ( 

ax, ax, 

[k: (i = j = k = I ) ,  

1 E  

30 v 
--- ( j = 1  and i = k ,  or i = l  and j = k ,  and i + j ) ,  

2 8  
15 v 

( k = Z  and i = j  and i + k ) ,  _-  

[ 0 (all other combinations), 

subject to 

and kept constant for a time interval equal to  the Kolmogorov timescale. 
The simulation proceeds as in the case of laminar shear with particle displacements 

being given by the product of the time step At and the fluid velocity corresponding 
to the particle position. Now, however, as the motion is three-dimensional and 
stochastic, true periodic boundary conditions can be used. This corresponds to the 
control volume being surrounded by copies which are deformed with the original. 
Particles in the control volume at the end of one time step can then be used for the 
next. However, in preliminary simulations, random fluctuations in the number of 
particles were found to cause trouble. To avoid the program halting because of too 
many or no particles left in the control volume the total number was adjusted a t  each 
time step according to 

N,,, = N,--c , ,+Nc,  

where N,,, is the number of collisions that had occurred during the time step, and 
N ,  the number of elemental particles added. I n  order to  satisfy the above condition, 
either particles were removed at random, or a particle whose volume had been chosen 
a t  random from the existing population was added a t  a random position. Finally, 
particle overlaps were resolved as explained in Q 3.4. 

3.6. Multiple mechanisms 
Simulations were performed in which the particle displacement was the linear sum 
of a fluid shearing and a Brownian component. The relative magnitude of the 
Brownian and shearing parameters could then be varied to  investigate their 
interaction. 

4. Results 
Figure 3 shows the effect of changing the r.m.s. steplength on collision rate in 

Brownian motion (see the Appendix for a discussion). There is some statistical scatter 
in the results, but the general shape of the curve is correct. From these results a 
suitable time step can be chosen for simulations involving Brownian motion. Similar 
computations of collision rates in laminar- and turbulent-shear-induced coagulation 
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FIGURE 3. Simulated collision rate of monodisperse particles undergoing Brownian motion as a 
function of r.m.8. displacement. The ratio between measured collision rate and theoretical rate is 
plotted against the ratio of steplength to particle radius. 

VIUO 

FIGURE 4. Development towards steady state of size distribution of initially monodisperse 
population undergoing Brownian-induced coagulation; Do = 0.222, E = 5.6 x i,,, = 125: 
_ - _ _ _ _  , t imet=25; - - - - - , 50 ; - - - - ,  100;-----,200;--,400;--,600. 

were performed to check that they yielded the values given by table 1 .  This, indeed, 
was found to be the case. The result for turbulent shear due to Saffman & Turner 
(1956) has been amended by a factor of d from that in the original paper, correcting 
an algebraic error. 

The development of a size distribution in a typical simulation starting with 
particles all of unit volume wo and undergoing Brownian-induced coagulation is shown 
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FIGURE 5. Steady-state non-dimensional size distribution for Brownian motion ; Do = 0.222, 
i,,, = 125: +, E = 5.6 x low5, 9 = 0.016; 0,  E = 4.4 x lo-*, 9 = 0.043. 

in figure 4. The size distribution is non-dimensionalized according to (3) and plotted 
logarithmically against particle volume non-dimensionalized with the unit particle 
volume. The curves plotted are smoothed approximations to the actual data points, 
a t  v = iw,, which are rather scattered. The upper portion of the data attains a slope 
of -% once a range of about one decade in volume has been reached. Then, as particles 
of increasing size are formed, the slope of the size distribution remains the same, but 
its absolute level declines gradually. It reaches a statistically steady state once the 
first large particle is lost from the system. The final steady state for this set of 
parameters is shown in figure 5 ,  along with that for a run a t  a higher final volume 
concentration q5 (this is obtained by adding more particles a t  each time step). The 
points plotted are actual data from the simulations, averaged over 1000 time steps. 
Even with this time averaging, there is still some statistical scatter in the data, 
especially at the lower end of the size distribution where very small numbers of 
particles are actually involved. To smooth the data further in the region w/w, = 20-100, 
they have been averaged in groups of 5 .  

For both these runs w,,, = 125v,, although the volume distribution is only plotted 
out to w/oo = 100. Beyond this the data becomes erratic. The two sets of data are 
fully collapsed by the normalization used and very clearly exhibit the -$ power law 
expected from Hunt's (1982) theory. The intercept of the best-fit line of slope -$with 
the axis w/w, = 1 gives the constant uB in (3).  

Figure 6 is a comparison of the steady-state size distributions for laminar shear 
a t  two volume concentrations differing by an order of magnitude. Again the data 
points are averaged over 1000 time steps, and are collapsed onto a slope of - 2  by 
the normalization suggested by dimensional arguments. Similar results are shown for 
turbulent shear in figure 7, where the inverse of the Kolmogorov timescale, (E/u):, 
is used in place of G in the normalization of the size distribution. Again, a - 2 power 
law is achieved a t  steady state, and the normalized results are independent of the 
flux of particle volume through the size range. Note, however, that the data points 
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FIGURE 7.  Steady-state non-dimensional size distribution for turbulent shear; Ksh = 0.5, 
i,,, = 125: +, E = 5 . 7 ~  $ = 0.053; 0, E = 1 . 4 ~  lo-', 4 = 0.008. 

are slightly lower than in the case of laminar shear. This is simply a consequence of 
the collision functions given in table 1:  the expressions for laminar and isotropic 
turbulent shear are identical if G is replaced by 1.72(e/v):. With this scaling the data 
of figures 6 and 7 collapse. This result strongly suggests the equivalence of laminar 
rectilinear shear and three-dimensional turbulent shear as coagulating agents. It is 
gratifying that the results of the simulations, which do not assume forms for the 
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FIGURE 8. Comparison of steady-state non-dimensional size distribution for Brownian motion for 
different i,,,: Do = 0.222, E = 5.6 x A, i,,, = 27, 4 = 0.011; +, i,,, = 125, 4 = 0.016; 
a, i,,, = 512, 4 = 0.0022. 
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FIGURE 9. Comparison of steady-state non-dimensional size distribution for laminar shear for 
differenti,,,: + , G = l , E = 1 . 1 x 1 0 ~ 5 , i , , , = 2 7 , ~ = 0 . 0 4 9 ; ~ , l , 1 . 1 ~ l O ~ 3 , 1 2 5 , 0 . 0 5 7 ; ~ , O . 2 5 ,  
1.4 x 512, 0.014. 

collision functions /3, agree well with arguments suggested by the analytic estimates 
for /3. 

The next series of simulation runs illustrate the effect that the ratio i,,, = vmax/uO 
(i.e. the size range covered by the simulation has on final steady-state size 
distributions in Brownian motion and laminar shear. Figures 8 and 9 give size 

13.2 
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FIGURE 10. Steady-state normalized size distribution for (i) Brownian motion and laminar shear, 
and (ii) Brownian motion and turbulent shear. (i) E = 5.6 x i,,, = 125: 0, Ksh = 0.25, 
q5 =0.0081; X ,  0.125, 0.011; 0, 0.063, 0.013. (ii) +, Ksh= 0.344, Do =0.8,  E = 1 . 7 ~ 1 0 - ~ ,  
i,,, = 512, q5 = 0.0096; 0,  0.215, 0.222, 5.6 x 125, 
0.013. 

125, 0.0077; 0, 0.043, 0.222, 5.6 x 

distributions for the three cases v,,,/vo = 27, 125 and 512. In  all cases the relevant 
-3 or -2  power law prevails. For Brownian motion the results for w,,,/wo = 125 
and 512 are indistinguishable, while those for the smallest size range are slightly 
higher at  the upper end of the size range. For laminar shear there is a slight but 
consistent decline in level with increasing size range. This reflects the extent to which 
the size distribution is affected by the collisions of the relatively small number of large 
particles. In laminar shear the collision function increased with the volume of the 
particles involved faster than in Brownian coagulation. Work on the effects of 
hydrodynamic interactions between particles on coagulation (for the most recent 
study see Adler 1981) suggests that they act to reduce most the collision rate between 
particles of widely different sizes. This would probably result in weaker dependence 
of the level of the size distribution (the value of ash) on the size range covered by 
the- simulation. Further work, with a more sophisticated simulation incorporating 
hydrodynamic interactions, will elucidate this point. 

A consensus of the simulations performed gives the values 

a~ = 0.2_+0.04, ash = 0.24+0.05. 

However, it is likely that accounting for hydrodynamic and interfacial forces will alter 
the values of these dimensionless constants. 

So far all the results have been for simulations in which only one collision 
mechanism has been present. We now turn to cases where both Brownian motion and 
fluid shearing operate. A new normalization of the size distribution and volume 
variable is now required to collapse all the data. Following Hunt (1982) we define a 
non-dimensional volume 

x = vKsh/KB,  
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where Ksh represents G or 1.72(e/u): ,  and KB is as before. This is such that the collision 
rates due to  Brownian motion and shear are equal for particles of size x x 1. Then 
if a normalized size distribution is defined by 

n* = n (‘y r+)’, 
(3) and (4) reduce to 

n * ( x )  = aB x-i and n*(X) = a s h ~ - 2 .  

Results of three simulations each for laminar and turbulent shear with Brownian 
motion are plotted in this normalized form in figure 10. Lines of slope -3 and - 2  
are drawn for comparison. There is some indication of a change in slope around x = 1 
but it is not conclusive. Also, the constants aB and ash obtained from the data in figure 
10 are the same (within statistical error) as those obtained from simulations with 
only one collision mechanism present, providing some support for the hypothesis of 
non-interference of mechanisms. 

5. Discussion 
The main aims of this study have been: 
1 .  to  study the feasibility of a Monte Carlo simulation of both the collision function 

p and the coagulation equation (2) for the evolution of a population of particles to 
a steady state ; 

2. the investigation of Hunt’s (1982) theory for the form of the resulting size 
distributions. 

The simulation method described has proved most successful in modelling the 
coagulating powers of both Brownian and bulk shearing mechanisms and the 
development of steady-state size distributions. This is in spite of the relatively 
restricted range of particle sizes that can be followed in any one computer run and 
the somewhat artificial strategy of adding new unit particles at each time step. 

The results show that final steady state is rather insensitive to the size range 
covered, and that the size distribution a t  the upper end (small particles) is not very 
disturbed by replacing the interactions of all small particles with the addition of unit 
particles a t  a constant rate. These observations are in accord with the striking success 
of dimensional analysis in predicting the observed size distributions. For dimensional 
analysis to be successful the dynamics of the coagulation process must be mainly 
‘local’ in size space so that further independent parameters (such as Z I ~  and urnax) are 
not important. We expect that  accounting for hydrodynamic interactions between 
particles will decrease the dependence of the level of the size distribution, for given 
volume flux, in shear-induced coagulation. Notice that the evolving populations of 
particles start to exhibit the relevant power law over much of their size distribution 
long before a steady state is reached. 

Hunt’s further hypothesis that  different collision mechanisms can act independently 
over separate size ranges has been partially confirmed. A slope of -3 is not very 
different from one - 2 when there is scatter in the data ! However, complete resolution 
of this point would require the simulation to cover a greater range of particle sizes. 
This is not feasible with the available computer storage. The perturbation analysis 
of van de Ven & Mason (1977)’ for the effect of weak shear on Brownian coagulation, 
suggests that when hydrodynamic interactions are considered the two mechanisms 
may not be strictly additive. 

I n  conclusion, it can be said that, while simple in concept, and using acceptable 
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computer resources, the simulation method has provided useful elucidation of Hunt’s 
hypotheses and experimental results under carefully controlled conditions. Further 
work on the technique to include hydrodynamic interactions, interfacial forces and 
gravitational settling is reported in Part 2 (Valioulis et al. 1984). 
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Appendix. Finite steplength and collision rate in Brownian motion 
The theoretical collision function ,8 for Brownian-induced collisions between 

particles of radii ri and ri given in table 1 was computed (see e.g. Chandrasekhar 1949) 
by solving a diffusion equation for the pair-distribution function w(s ) ,  where s is the 
distance beteen the particles. In particular, the collision function is given by the 
asymptotic flux to the surface of a fixed sphere of radius cr = r i + r f ,  with a total 
diffusivity D = Di+ Di. The ‘concentration’ w is held at  zero at s = cr and at  unity 
at s = co. Initially w is uniform outside the sphere. Then at  large times the pair- 
distribution function is given by 

w =  I---. 
S ’  

whence the required result 
(A 1) 

cr 

/3 = 47cD ( s2 g) = 47cDv. (A 2) 
8-8  

If the actual pair-distribution function in the finite-steplength simulation was 
identical with that in (A 1)  then the collision rate measured would be no larger than 
one-half of that in (A 2), however small the steplength. This result can be obtained 
either by careful evaluation of the expected collision probability from the algorithms 
used for generating particle displacements and detecting collisions, or by the following 
simple argument. In the limit of Ax 4 cr, i.e. very small r.m.s. steplength, but still 
with At & t,, two particles must be so close at the beginning of the time step in which 
they collide that the curvature of their surfaces may be neglected. The problem then 
reduces to that of the collision of a diffusing point with an adsorbing plane and we 
need only consider the component of the random walk perpendicular to the plane. 

Consider now this one-dimensional problem. The particle is judged to have collided 
with the plane if its final position is on the far side of the plane. For any given final 
position on the far side of the plane there is a whole class of possible Brownian 
trajectories leading to it. Now each of these trajectories must cross the plane for the 
first time a t  some point. There will be an associated trajectory defined to be identical 
with the original until the first contact with the adsorbing plane and then the mirror 
image, in the plane, of the original. As the endpoint of this associated trajectory lies 
on the near side of the plane i t  would not be judged a collision by the collision 
algorithm. Hence the 50 % inefficiency. 

However, for the same reason, the pair-distribution function will not be identical 
in the theoretical and simulated cases. In the finite-steplength case, w will be larger 
within a distance of order Ax of s = CT. This can compensate for the basic inefficiency 
of the collision algorithm. The actual form of w for a given distribution of steplengths 
and hence the collision function could be computed by solving the relevant integral 
equation. This has not been done as yet, but the non-coagulating form of the 
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simulation has been used to determine the collision rate for a monodisperse 
population of particles as a function of the mean steplength. The results of this 
‘experimental’ determination are shown in figure 3. The ratio of measured collision 
rate to  that predicted from (A 2) is plotted against the ratio of r.m.s. displacement 
Ax in any direction, and the particle radius r .  The ratio is unity for Ax/r about 0.6, 
and so Ax is chosen accordingly in all the coagulation simulations. 
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